Răspuns :
Există două condiţii pentru care o funcţie să admită primitive:
Condiţia 1: Dacă funcţia este continuă pe un anumit interval, atunci ea admite primitive pe intervalul respectiv.
Conditia 2: Fie o funcţie f:A->B. Dacă există o altă funcţie F, definită pe acelaşi interval, astfel încăt F'=f, atunci acea funcţie admite primitive pe intervalul respectiv.
'Continuitatea' se referă la faptul că graficul funcţiei poate fi trasat 'fără să ridicăm pixul de pe foaie' (mai băbeşte- este doar o singură linie, fără întreruperi). Ţi-am lăsat mai jos o poză cu graficul unei funcţii care NU este continuă, ca să faci diferenţa.
Orice funcţie elementară este continuă, iar funcţiile elementare sunt: modulul, radicalul, polinomiala, exponentiala, logaritimca, rationala, trigonometrice.
De exemplu:
[tex]f:R->R; f_{(x)} = x^2+3x+4[/tex]
Dacă la bac te-ar pune să demonstrezi că funcţia de mai sus admite primitive, este suficient să spui că aceasta este o funcţie elementară => este continuă => admite primitive.
Pot apărea, de asemenea, funcţii care au puncte de discontinuitate, de exemplu:
[tex]f:R->R f_{(x)} = \left[\begin{array}{ccc}2x-1, \ \ \ \ \ \ \ \ x<1 \\2x^2-6x+5, \ \ \ \ \ \ \ \ x>=1\end{array}\right] [/tex]
Pentru astfel de funcţii, trebuie să calculezi limitele laterale; dacă acestea au valori egale, atunci funcţia este continuă -> admite primitive pe acel interval.
Condiţia 1: Dacă funcţia este continuă pe un anumit interval, atunci ea admite primitive pe intervalul respectiv.
Conditia 2: Fie o funcţie f:A->B. Dacă există o altă funcţie F, definită pe acelaşi interval, astfel încăt F'=f, atunci acea funcţie admite primitive pe intervalul respectiv.
'Continuitatea' se referă la faptul că graficul funcţiei poate fi trasat 'fără să ridicăm pixul de pe foaie' (mai băbeşte- este doar o singură linie, fără întreruperi). Ţi-am lăsat mai jos o poză cu graficul unei funcţii care NU este continuă, ca să faci diferenţa.
Orice funcţie elementară este continuă, iar funcţiile elementare sunt: modulul, radicalul, polinomiala, exponentiala, logaritimca, rationala, trigonometrice.
De exemplu:
[tex]f:R->R; f_{(x)} = x^2+3x+4[/tex]
Dacă la bac te-ar pune să demonstrezi că funcţia de mai sus admite primitive, este suficient să spui că aceasta este o funcţie elementară => este continuă => admite primitive.
Pot apărea, de asemenea, funcţii care au puncte de discontinuitate, de exemplu:
[tex]f:R->R f_{(x)} = \left[\begin{array}{ccc}2x-1, \ \ \ \ \ \ \ \ x<1 \\2x^2-6x+5, \ \ \ \ \ \ \ \ x>=1\end{array}\right] [/tex]
Pentru astfel de funcţii, trebuie să calculezi limitele laterale; dacă acestea au valori egale, atunci funcţia este continuă -> admite primitive pe acel interval.
Vă mulțumim pentru vizita pe platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, nu ezitați să ne contactați. Așteptăm cu entuziasm să reveniți și vă invităm să ne adăugați la lista de favorite!